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Vision Transformers for Video Understanding   

[ E. Bahrami et al. 

How Much 

Temporal Long-

Term Context is 

Needed for Action 

Segmentation? 

ICCV 2023 ]



Vision Transformers for Images or Videos
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[ A. Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021 ]

[ https://amaarora.github.io/2021/01/18/ViT.html ]



Vision Transformers for Images or Videos
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How can we make transformer 

architectures more efficient? 



Efficient Image and Video Understanding 

• Transformers are very expensive (high GFLOP) 

• Not all GFLOPS are needed for all videos or images
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[ M. Fayyaz et al. Adaptive Token Sampling For Efficient Vision Transformers. ECCV 2022 ]
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Reduce number of tokens for inference



Efficient Vision Transformers  

Use only as much 

tokens as needed 

for inference 
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[ M. Fayyaz et al. Adaptive Token 

Sampling For Efficient Vision 

Transformers. ECCV 2022 ]



Efficient Vision Transformers 
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[ M. Fayyaz et al. Adaptive Token 

Sampling For Efficient Vision 

Transformers. ECCV 2022 ]



Efficient Vision Transformers 
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[ M. Fayyaz et al. Adaptive Token 

Sampling For Efficient Vision 

Transformers. ECCV 2022 ]



Efficient Vision Transformers 
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Score of token, j=2, …, N+1

[ M. Fayyaz et al. Adaptive Token 

Sampling For Efficient Vision 

Transformers. ECCV 2022 ]



Efficient Vision Transformers 
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[ M. Fayyaz et al. Adaptive Token 

Sampling For Efficient Vision 

Transformers. ECCV 2022 ]



Efficient Vision Transformers 
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[ M. Fayyaz et al. Adaptive Token 
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Efficient Vision Transformers 
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[ M. Fayyaz et al. Adaptive Token 

Sampling For Efficient Vision 

Transformers. ECCV 2022 ]



Efficient Vision Transformers 
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Qualitative Results
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[ M. Fayyaz et al. Adaptive Token Sampling For Efficient Vision Transformers. ECCV 2022 ]



Quantitative Results
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Quantitative Results
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[ M. Fayyaz et al. Adaptive Token Sampling For Efficient Vision Transformers. ECCV 2022 ]
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Replace attention by state space model
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State Space Model for Video 

Understanding

[ K. Li et al. VideoMamba: State Space Model for Efficient Video Understanding. ECCV 2024 ]



State Space Model for Video 

Understanding
• VideoMamba has major 

shortcomings

• Does not scale  
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[ H. Suleman et al. Distillation-free Scaling of 

Large SSMs for Images and Videos. arxiv 2024 ]



State Space Model for Video 

Understanding
• VideoMamba has major 

shortcomings

• Does not scale  

• Instable training
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[ H. Suleman et al. Distillation-free Scaling of 

Large SSMs for Images and Videos. arxiv 2024 ]



State Space Model for Video 

Understanding
• VideoMamba has major 

shortcomings

• Does not scale  

• Instable training

• More sensitive to image 

corruption compared to 

transformer 
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[ H. Suleman et al. Distillation-free Scaling of 

Large SSMs for Images and Videos. arxiv 2024 ]
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State Space Model for Video 

Understanding

[ H. Suleman et al. Distillation-free Scaling of Large SSMs for Images and Videos. arxiv 2024 ]
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Avoid vision encoder for 

video-language models 



Video Question 

Answering 
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[ J. Yi et al. Video-Panda: Parameter-

efficient Alignment for Encoder-free 

Video-Language Models. CVPR 2025 ]



Parameter-Efficient Video-Language 

Models
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[ J. Yi et al. Video-Panda: Parameter-efficient Alignment for Encoder-free Video-Language Models. CVPR 2025 ]



Parameter-Efficient Video-Language 

Models
• No need for additional vision encoders
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[ J. Yi et al. Video-Panda: Parameter-efficient Alignment for Encoder-free Video-Language Models. CVPR 2025 ]



Parameter-Efficient Video-Language 

Models
• No need for additional vision encoders
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[ J. Yi et al. Video-Panda: Parameter-efficient Alignment for Encoder-free Video-Language Models. CVPR 2025 ]



Video Question 

Answering 
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[ J. Yi et al. Video-Panda: Parameter-

efficient Alignment for Encoder-free 

Video-Language Models. CVPR 2025 ]
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Combine local and global attention



Vision Transformers for Action Segmentation 
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[ E. Bahrami et al. How Much Temporal Long-Term Context is Needed for Action Segmentation? ICCV 2023 ]
36



Vision Transformers for Action Segmentation 
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[ E. Bahrami et al. How Much Temporal Long-Term Context is Needed for Action Segmentation? ICCV 2023 ]
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Attention over local window 



Vision Transformers for Action Segmentation 
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[ E. Bahrami et al. How Much Temporal Long-Term Context is Needed for Action Segmentation? ICCV 2023 ]
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Attention over subsampled video 



Vision Transformers for Action Segmentation 
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Attention over local window Attention over subsampled video 

[ E. Bahrami et al. How Much Temporal Long-Term Context is Needed for Action Segmentation? ICCV 2023 ]



Vision Transformers for Action Segmentation 
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Attention over local window Attention over subsampled video 

[ E. Bahrami et al. How Much Temporal Long-Term Context is Needed for Action Segmentation? ICCV 2023 ]



Vision Transformers for Action Segmentation 
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[ E. Bahrami et al. How Much Temporal Long-Term Context is Needed for Action Segmentation? ICCV 2023 ]
41



Vision Transformers for Action Segmentation 
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[ E. Bahrami et al. How Much Temporal Long-Term Context is Needed for Action Segmentation? ICCV 2023 ]
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Vision Transformers for Action Segmentation 
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[ E. Bahrami et al. 

How Much 

Temporal Long-

Term Context is 

Needed for Action 

Segmentation? 

ICCV 2023 ]
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Anticipating Behavior

[ Y. Abu Farha et al. When will you do what? Anticipating Temporal Occurrences of Activities. CVPR 2018 ]

Past FutureAnticipate



Gated Temporal Diffusion for Anticipation
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• Forecast future actions and their durations  

    

[ O. Zatsarynna et al. Gated Temporal Diffusion for Stochastic Long-term Dense Anticipation. ECCV 2024 ]



Gated Temporal Diffusion for Anticipation
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• Forecast future actions and their durations 

• Model uncertainty of the future

    

[ O. Zatsarynna et al. Gated Temporal Diffusion for Stochastic Long-term Dense Anticipation. ECCV 2024 ]



Gated Temporal Diffusion for Anticipation
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• Forecast future actions and their durations 

• Model uncertainty of the future

• Model uncertainty of the observation

[ O. Zatsarynna et al. Gated Temporal Diffusion for Stochastic Long-term Dense Anticipation. ECCV 2024 ]



Diffusion Model

Diffusion models consist of two processes:

• Forward diffusion process that gradually adds noise to input

• Reverse denoising process that learns to generate data by 

denoising
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Generative Process

Reverse denoising process 
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is a network 



MANTA: Diffusion Mamba for Anticipation
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[ O. Zatsarynna et al. MANTA: Diffusion Mamba for Efficient and Effective Stochastic Long-Term Dense 

Anticipation. CVPR 2025 ]



MANTA: Diffusion Mamba for Anticipation
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[ O. Zatsarynna et al. MANTA: Diffusion Mamba for Efficient and Effective Stochastic Long-Term Dense 

Anticipation. CVPR 2025 ]



MANTA: Diffusion Mamba for Anticipation
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[ O. Zatsarynna et al. MANTA: Diffusion Mamba for Efficient and Effective Stochastic Long-Term Dense 

Anticipation. CVPR 2025 ]



MANTA: Diffusion Mamba for Anticipation
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[ O. Zatsarynna et al. MANTA: Diffusion Mamba for Efficient and Effective Stochastic Long-Term Dense 

Anticipation. CVPR 2025 ]



MANTA: Diffusion Mamba for Anticipation
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[ O. Zatsarynna et al. MANTA: 

Diffusion Mamba for Efficient 

and Effective Stochastic 

Long-Term Dense 

Anticipation. CVPR 2025 ]



MANTA: Diffusion Mamba for Anticipation
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[ O. Zatsarynna et al. MANTA: 

Diffusion Mamba for Efficient 

and Effective Stochastic 

Long-Term Dense 

Anticipation. CVPR 2025 ]
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Forecasting



Wildfire Forecasting
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Meteorological 

data

Satellite 

products

Topographic 

variables

Land cover

Resolution: 
1km × 1km × 1day

years - 2009-2021

Wildfire susceptibility map for 

02/07/2021



Qualitative Results 
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[ M.H.S. Eddin et al. Location-Aware Adaptive Normalization: A Deep Learning Approach for Wildfire Danger 

Forecasting. IEEE Transactions on Geoscience and Remote Sensing 2023 ]



Qualitative Results 
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[ M.H.S. Eddin et al. Location-Aware Adaptive Normalization: A Deep Learning Approach for Wildfire Danger 

Forecasting. IEEE Transactions on Geoscience and Remote Sensing 2023 ]
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Forecasting Agricultural Drought



Forecasting Agricultural Drought
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Simulation

Future

Projection

Present



Forecasting Agricultural Drought
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TerrSysMP

Simulation
BT

NDVI

Encoder Decoder

Drought Index

VHI

[ M.H.S. Eddin et al. Focal-TSMP: Deep learning for vegetation health prediction and agricultural drought 

assessment from a regional climate simulation. Geoscientific Model Development 2024 ]
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Forecasting Agricultural Droughts

 



Summary

• There are many ways to improve the efficiency of transformer 

architectures

• State space models / Mamba architectures are more efficient, 

but have some disadvantages compared to transformers

• HPC is crucial for all experiments: 

• Marvin (University of Bonn)

• JUWELS (WestAI, Jülich Supercomputing Centre) 

• Leonardo (EuroHPC, CINECA, Italy)    
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Thank you for your attention.
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